1 Variance and Covariance

1.1 Concepts

Distribution	PMF	$E(X)$	Variance
Uniform	If $\# R(X)=n$, then	$\sum_{i=1}^{n} \frac{x_{i}}{n}$	$\sum_{i=1}^{n} \frac{\left(x_{i}-\mu\right)^{2}}{n}$
	$f(x)=\frac{1}{n}$ for all $x \in$		
	$R(X)$.		
Bernoulli Trial	$f(0)=1-p, f(1)=p$	p	$\operatorname{Var}(X)=p(1-p)$
Binomial	$f(k)=\binom{n}{k} p^{k}(1-p)^{n-k}$	$n p$	$n p(1-p)$
Geometric	$f(k)=(1-p)^{k} p$	$\frac{1-p}{p}$	$\operatorname{Var}(X)=\frac{1-p}{p^{2}}$
Hyper-Geometric	$f(k)=\frac{\binom{m}{k}\binom{N-m}{n-k}}{\binom{N}{n}}$	$\frac{n m}{N}$	$\frac{n m(N-m)(N-n)}{N^{2}(N-1)}$
Poisson	$f(k)=\frac{\lambda^{k} e!}{k!}$	λ	λ

The Variance is defined as $\operatorname{Var}(X)=E\left((X-\mu)^{2}\right)$. An easier form is $E\left(X^{2}\right)-E(X)^{2}$. It satisfies some properties:

- $\operatorname{Var}(c)=0$
- $\operatorname{Var}(c X)=c^{2} \operatorname{Var}(X)$
- $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+V(Y)$ for independent random variables.

The Standard Error is defined as $S E(X)=\sqrt{\operatorname{Var}(X)}$. We use it to get the same units as X.

The Covariance is defined as $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]$. It measures how "independent" two random variables are. For independent random variables, we have $\operatorname{Cov}(X, Y)=0$. Note that we can recover the definition of regular variance because the covariance of a random variable with itself is $\operatorname{Cov}(X, X)=E\left[X^{2}\right]-E[X]^{2}=\operatorname{Var}(X)$. We can update the formula for the variance of the sum of two random variables as $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)$ which holds for all random variables. Properties that hold for the random variable are:

- $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$
- $\operatorname{Cov}(X, Y+Z)=\operatorname{Cov}(X, Y)+\operatorname{Cov}(X, Z)$
- $\operatorname{Cov}(X, c Y)=c \operatorname{Cov}(X, Y)$ for any constant c
- $\operatorname{Cov}(X, c)=0$ for any constant c

1.2 Examples

2. Let X be a uniform random variable with range $\{-1,0,1\}$. Let $Y=X^{2}$. Calculate $\operatorname{Cov}(X, Y)$.

Solution: The PMF for X is

$$
f(x)= \begin{cases}\frac{1}{3} & x=-1,0,1 \\ 0 & \text { otherwise }\end{cases}
$$

Then the PMF for Y is

$$
g(x)= \begin{cases}\frac{2}{3} & x=0,1 \\ 0 & \text { otherwise }\end{cases}
$$

Finally we calculate the PMF for $X Y=X^{3}$ to be the same as the PMF for X. Now finally

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E[X Y]-E[X] E[Y] \\
& =\left(1 \cdot \frac{1}{3}+0 \cdot \frac{1}{3}+(-1) \cdot \frac{1}{3}\right)-\left(1 \cdot \frac{1}{3}+0 \cdot \frac{1}{3}+(-1) \cdot \frac{1}{3}\right)\left(1 \cdot \frac{2}{3}+0 \cdot \frac{1}{3}\right) \\
& =0-0 \cdot \frac{2}{3}=0
\end{aligned}
$$

1.3 Problems

3. True FALSE For independent random variables X, Y we have $\operatorname{Var}(X-Y)=$ $\operatorname{Var}(X)-\operatorname{Var}(Y)$.

Solution:

$\operatorname{Var}(X-Y)=\operatorname{Var}(X)+\operatorname{Var}(-Y)=\operatorname{Var}(X)+(-1)^{2} \operatorname{Var}(Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$.
4. TRUE False The product of two Bernoulli trials is another Bernoulli trial.

Solution: A Bernoulli trial has range $\{0,1\}$ and the product of any two numbers there are 0 or 1 so the product is still a Bernoulli trial.
5. TRUE False If c is a constant, then $\operatorname{Var}(X+c)=\operatorname{Var}(X)$.

Solution: Conceptually, this is telling you that if you shift a distribution left or right by c, it doesn't change how spread out it is. You can use the shortcut formula to also verify this.
6. True FALSE The covariance of two random variables is always ≥ 0.

Solution: The covariance of X with $-X$ is $\operatorname{Cov}(X,-X)=E\left[-X^{2}\right]-E[X] E[-X]=$ $-\operatorname{Var}(X) \leq 0$.
7. TRUE False For random variables X, Y and constants c, d, we have $\operatorname{Cov}(X+c, Y+$ $d)=\operatorname{Cov}(X, Y)$.

Solution: We can compute this out by plugging in $\operatorname{Cov}(X+c, Y+d)=E[(X+$ $c)(Y+d)]-E[X+c] E[Y+d]$ and using the fact that the expected value of a constant is the constant itself $(E[c]=c)$ to simplify and get $E[X Y]-E[X] E[Y]=\operatorname{Cov}(X, Y)$.
8. While pulling out of a box of cookies, what is the expected number of cookies I have to pull out before I pull out an oatmeal raisin if 20% of cookies are oatmeal raisin? What is the variance?

Solution: This is a geometric distribution because I am counting the number of cookies I have to pull out before a success. The probability of success is $20 \%=p=$ $1 / 5$. So the expected number of cookies I have to pull out is $\frac{1-p}{p}=4$. The variance is $\frac{1-p}{p^{2}}=4 /(1 / 5)=20$.
9. I flip a coin some number of times and I expected to see 90 heads with a standard deviation of 3 heads. What is the probability that I actually see 95 heads?

Solution: We are in a binomial distribution with $n p=90$ and $\sqrt{n p(1-p)}=3$ so $n p(1-p)=9$ and $1-p=\frac{1}{10}$ so $p=\frac{9}{10}$ and $n=100$. Thus, to get $k=95$ heads, the probability is

$$
f(95)=\binom{100}{95}(0.9)^{95}(0.1)^{5} .
$$

10. I am at a casino and play a game and am expected to gain 10 cents per play with a variance of $1 \2 if I bet $\$ 10$. What is the expected value and variance when I bet $\$ 100$ instead?

Solution: We can think of this as $E[X]$ vs $E[10 X]$. The expected value is multiplied by 10 so I expect to get $\$ 1$ and the variance is multiplied by 10^{2} so the variance is $100 \2.
11. Prove the short cut formula for variance from the definition of variance.

Solution:

$$
\begin{aligned}
\operatorname{Var}[X] & =E\left[(X-E[X])^{2}\right] \\
& =E\left[X^{2}-2 X E[X]+E[X]^{2}\right] \\
& =E\left[X^{2}\right]-2 E[X E[X]]+E\left[E[X]^{2}\right] \\
& =E\left[X^{2}\right]-2 E[X] E[X]+E[X]^{2} \\
& =E\left[X^{2}\right]-E[X]^{2} .
\end{aligned}
$$

Where we use the fact that $E[X]$ is a constant so we can move it out of the expected value and the expected value of a constant is the constant itself.
12. Suppose that I flip a fair coin 10 times. Let T be the number of tails I get and H the number of heads. Calculate $E[T], E[H], \operatorname{Var}[T], \operatorname{Var}[H], \operatorname{Var}[T+H]$. Now calculate $E[T-H]$ and $\operatorname{Var}[T-H]$.

Solution: Both T, H are binomial distributions with $T+H=10$ because there are 10 coin flips total. Thus, using the formula for the binomial distribution with $n=10, p=\frac{1}{2}$, we get that

$$
E[T]=E[H]=n p=5
$$

Then $\operatorname{Var}[T]=\operatorname{Var}[H]=n p(1-p)=2.5$. Finally $\operatorname{Var}[T+H]=\operatorname{Var}[10]=0$. And also $E[T-H]=E[T]-E[H]=0$.
Now to calculate the variance, we cannot split it up since T, H are not independent. But, we know that $H+T=10$ so $T-H=T-(10-T)=2 T-10$ and so $\operatorname{Var}[T-H]=\operatorname{Var}[2 T-10]=\operatorname{Var}[2 T]=4 \operatorname{Var}[T]=10$.

2 Average of Random Variables

2.1 Concepts

13. For X_{i} independent and identically distributed (i.i.d.) (e.g. rolling a die multiple times) with $E\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$, then the average that we get (e.g. the average number that we roll) is approximately normal distributed with mean μ and standard deviation σ / \sqrt{n}. So

$$
\bar{X}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}
$$

is approximately normally distributed with $E[\bar{X}]=\mu$ and $\operatorname{Var}(\bar{X})=\sigma^{2} / n$.

2.2 Examples

14. Show that the distribution of \bar{X}, the average of n i.i.d. random variables with mean μ and standard deviation σ has mean μ and standard deviation σ / \sqrt{n}.

Solution: First, we note that the mean is

$$
E[\bar{X}]=E\left[\frac{X_{1}+\cdots+X_{n}}{n}\right]=\frac{E\left[X_{1}\right]+\cdots+E\left[X_{n}\right]}{n}=\frac{\mu n}{n}=\mu .
$$

Then, the variance adds and note that $\operatorname{Var}(c X)=c^{2} \operatorname{Var}(X)$ to get that

$$
\operatorname{Var}(\bar{X})=\frac{1}{n^{2}} \operatorname{Var}\left(X_{1}+\cdots+X_{n}\right)=\frac{\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)}{n^{2}}=\frac{n \sigma^{2}}{n^{2}}=\frac{\sigma^{2}}{n} .
$$

Therefore the standard error or standard deviation is $\sqrt{\left(\sigma^{2}\right) / n}=\sigma / \sqrt{n}$.
15. Suppose that the height of women is distributed with an average height of 63 inches and a standard deviation of 10 inches. Taking a sample of 100 women, what is the expected value and standard deviation for the average height?

Solution: The average height of 100 women will be approximately normally distributed with average 63 and standard deviation $10 / \sqrt{100}=1$.

2.3 Problems

16. TRUE False For a constant $c \geq 0$, we have that $S E(c X)=c S E(X)$.

Solution: This comes from the fact that $\operatorname{Var}(c X)=c^{2} \operatorname{Var}(X)$ and so $S E(c X)=$ $\sqrt{\operatorname{Var}(c X)}=\sqrt{c^{2} \operatorname{Var}(X)}=c \sqrt{\operatorname{Var}(X)}=c S E(X)$.
17. True FALSE Suppose that I roll a fair die 100 times. Then since the expected value of the average die roll is 3.5 , I will roll a 1,2 , or 350 times and a 4,5 , or 650 times.

Solution: The average is 3.5 but I could roll all 6 's for instance.
18. Suppose the weight of newborns is distributed with an average weight of 8 ounces and a standard deviation of 1 ounce. Today, there were 25 babies born at the Berkeley hospital. What is the expected value and variance of the average weight of these babies?

Solution: The average weight of these babies will be approximately normally distributed with mean 8 and standard deviation $1 / \sqrt{25}=0.2$ so variance of $0.2^{2}=0.04$.
19. Suppose that the average lifespan of a human is 75 years with a standard deviation of 10 years. What is the mean and standard error of the average lifespan of a class of 25 students?

Solution: The average lifespan of 25 students is approximately normally distributed with mean 75 and standard deviation $10 / \sqrt{25}=2$.
20. Suppose that in the 2012 election, 55% of people preferred Obama over Romney. If I sample 100 random people (assume that they are independently chosen), what is the expected value and variance for the percentage of the people sampled who support Obama?

Solution: Let X be a random variable that is 1 if the person prefers Obama and 0 otherwise. Then, we know that $E[X]=0.55$ and $\operatorname{Var}(X)=0.55 \cdot(1-0.55)^{2}+$ $0.45(0-0.55)^{2}=0.2475$ so $S E(X) \approx 0.5$. Let \bar{X} be the average of asking 100 people, and hence \bar{X} is normally distributed with mean 0.55 and standard deviation $0.5 / \sqrt{100}=0.05$.
21. The newest Berkeley quarterback throws an average of $0.75 \mathrm{TDs} /$ game with a standard deviation of 1 . What is his expected value and standard deviation for the number of TDs he throws next season (16 total games)?

Solution: In 16 games, he will average $0.75 \mathrm{TDs} /$ game with a standard deviation of $1 / \sqrt{16}=0.25$. So multiplying by 16 gives us that he will average 12 TDs total with a standard deviation of $1 / \sqrt{16} \cdot 16=4$ TDs.
22. Let X_{1}, \ldots, X_{4} be i.i.d Bernoulli trials with $p=\frac{3}{4}$. Let \bar{X} be the average of them. What is $\operatorname{Var}[\bar{X}]$? Find $\operatorname{Cov}\left(X_{1}, \bar{X}\right)$ (Hint: Write $\bar{X}=\frac{1}{4}\left(X_{1}+X_{2}+X_{3}+X_{4}\right)$).

Solution: Each of the X_{i} is Bernoulli so expected value of $p=\frac{3}{4}$ and variance of $p(1-p)=\frac{3}{16}$. Then the variance of $\operatorname{Var}[\bar{X}]=\frac{1}{n} \operatorname{Var}\left[X_{1}\right]=\frac{1}{4} \cdot \frac{3}{16}=\frac{3}{64}$. Finally, we have that

$$
\begin{aligned}
\operatorname{Cov}\left(X_{1}, \bar{X}\right) & =\operatorname{Cov}\left(X_{1}, \frac{1}{4}\left(X_{1}+X_{2}+X_{3}+X_{4}\right)\right) \\
& =\frac{1}{4}\left(\operatorname{Cov}\left(X_{1}, X_{1}\right)+\operatorname{Cov}\left(X_{1}, X_{2}\right)+\operatorname{Cov}\left(X_{1}, X_{3}\right)+\operatorname{Cov}\left(X_{1}, X_{4}\right)\right) \\
& =\frac{1}{4}\left(\operatorname{Var}\left(X_{1}\right)+0+0+0\right) \\
& =\frac{1}{4} \frac{3}{16}=\frac{3}{64} .
\end{aligned}
$$

